fbpx

SCIENCE JOURNAL

Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota

The effects of intermittent fasting on white adipose tissue and obesity.

OCT 3, 2017

Written by Guolin Li, Cen Xie, Siyu Lu, Robert G. Nichols, Yuan Tian, Licen Li, Daxeshkumar Patel, Yinyan Ma, Chad N. Brocker, Tingting Yan, Kristopher W. Krausz, Rong Xiang, Oksana Gavrilova, Andrew D. Patterson, Frank J. Gonzalez

View full article HERE.

 01


ABSTRACT

While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases.

 02


CONCLUSION

In summary, the present work uncovered novel perspectives on beige-fat development in the inguinal white adipose tisue (WAT). Every-other-day fasting (EODF) was shown to selectively activate beige fat, probably by re-shaping the gut microbiota, which led to increases in the beiging stimuli acetate and lactate. EODF also dramatically ameliorated metabolic syndrome in a mouse model of obesity. This alternative beige fat activation by EODF offers new insights into the microbiota-beige fat axis and provides a novel therapeutic approach for the treatment of obesity-related metabolic disorders.